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1. Introduction

A Schrödinger algebra [1, 2] is known as a non-relativistic analog of relativistic conformal

algebra. The algebra with d spatial dimensions may be embedded into a conformal algebra

so(d+2,2). Hence it is an interesting attempt to consider a role of the Schrödinger algebra

in the context of AdS/CFT correspondence [3 – 5].

Non-relativistic CFT (NRCFT), which has Schrödinger symmetry, is discussed in [6 – 9]

and it is expected to have an application to a cold atom system [10, 11]. A candidate of the

gravity dual, which preserves the Schrödinger symmetry as the maximal one, is proposed

in [10, 11]. As another scenario, it has been proposed in [12, 13] that one may consider

AdS/NRCFT without deforming the metric and including any exotic matters. It would be

an interesting direction to consider a supersymmetric extension of [12, 13] by considering

the standard setup of AdS/CFT.

As the first step, super Schrödinger algebras should be found from the superconformal

algebras. We have obtained the Schrödinger algebras with 24 supercharges as subalgebras

of psu(2,2|4), osp(8|4) and osp(8∗|4) [14], which preserve 16 rigid supersymmetries while

half of 16 superconformal generators are projected out. The Schrödinger algebras may be

realized in the corresponding gauge theories. But the field theoretical model, which has

the super Schrödinger symmetry as the maximal one, has not been revealed yet.

The study of super Schrödinger algebra has a long history and it has been discussed

in some contexts [15 – 19]. There are some models possessing super Schrödinger symmetry
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as the maximal one, such as a superparticle [15], super harmonic oscillator [16] and non-

relativistic super Chern-Simons (CS) matter system in three dimensions [17].1

But the number of the conserved supercharges in the models is not so large and, for

example, the non-relativistic CS matter system has N=2 in three dimensions. On the

other hand, our resulting algebras contain N=8 in three dimensions. Hence, in order to

find any common ground between our procedure and the existing result, it would be nice

to look for less supersymmetric Schrödinger subalgebras of psu(2,2|4) . If we could find a

point of agreement, it might give a clue to discuss the gauge-theory side.

In this manuscript we discuss this issue and find more super Schrödinger subalgebras of

psu(2,2|4). We first construct N=2 and N=1 superconformal algebras2 from the psu(2,2|4)
by constructing projection operators. Then a new super Schrödinger algebra is found from

each of them. The one obtained from N=2 contains 12 supercharges with su(2)2×u(1)

R-symmetry and the other from N=1 has 6 supercharges with u(1)3 . Another super

Schrödinger algebra, which preserves 6 supercharges with a single u(1) symmetry, is also

obtained from N=1 superconformal algebra su(2,2|1) . In particular, it coincides with the

symmetry of the N=2 non-relativistic CS matter system in three dimensions [17].

This manuscript is organized as follows. In section 2, N=2 and N=1 superconfor-

mal algebras are derived from the N=4 superconformal algebra psu(2,2|4) via projection

operators. In section 3 super Schrödinger algebras are found as subalgebras of N=2 and

N=1 superconformal algebras. Section 4 is devoted to a conclusion and discussions. In

the appendix we briefly summarize our notation and the relation between psu(2,2|4) and

N=4 superconformal generators.

2. N = 2 and 1 conformal algebras from psu(2,2|4)

By constructing projection operators, we will obtain N=2 and N=1 superconformal alge-

bras from the N=4 superconformal algebra described by psu(2,2|4).3

2.1 N = 4 superconformal algebra

We begin with the four-dimensional N=4 superconformal algebra. The commutation rela-

tions of the bosonic generators are composed of the AdS5 part and the S5 part. The AdS5

part is given by4

[P̃µ, D̃] = −P̃µ , [K̃µ, D̃] = K̃µ , [P̃µ, K̃ν ] =
1

2
J̃µν +

1

2
ηµνD̃ ,

[J̃µν , P̃ρ] = ηνρP̃µ − ηµρP̃ν , [J̃µν , K̃ρ] = ηνρK̃µ − ηµρK̃ν , (2.1)

[J̃µν , J̃ρσ ] = ηνρJ̃µσ+3-terms ,

1The non-relativistic CS matter system was originally constructed by Jackiw and Pi [20], and its super-

symmetrization has been done in [21].
2Those are obtained from N=4 and hence should be called N=2∗ and N=1∗ , respectively. But for

simplicity we will omit ∗ hereafter.
3For the relation between psu(2,2|4) and the generators of N=4 superconformal, see appendix A.
4We suppress trivial (anti-)commutation relations below.
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and the S5 part is

[Pa′ , Pb′ ] = −Ja′b′ , [Ja′b′ , Pc′ ] = ηb′c′Pa′ − ηa′c′Pb′ ,

[Ja′b′ , Jc′d′ ] = ηb′c′Ja′d′ + 3-terms .

Then the (anti-)commutation relations, which contain the fermionic generators Q̃ and S̃ ,

are as follows. Those of the bosonic generators and the fermionic ones are

[P̃µ, S̃] = −1

2
Q̃Γµ4 , [K̃µ, Q̃] =

1

2
S̃Γµ4 , [D̃, Q̃] =

1

2
Q̃ , [D̃, S̃] = −1

2
S̃,

[J̃µν , Q̃] =
1

2
Q̃Γµν , [J̃µν , S̃] =

1

2
S̃Γµν ,

[Pa′ , Q̃] =
1

2
Q̃Γa′J iσ2 , [Ja′b′ , Q̃] =

1

2
Q̃Γa′b′ ,

[Pa′ , S̃] =
1

2
S̃Γa′J iσ2 , [Ja′b′ , S̃] =

1

2
S̃Γa′b′ ,

and those of the fermionic generators are

{Q̃T , Q̃} = 4iCΓµp−h+P̃µ , {S̃T , S̃} = 4iCΓµp+h+K̃µ ,

{Q̃T , S̃} = iCΓµνIiσ2p+h+J̃µν + 2iCΓ4p+h+D̃

+2iCΓa′

p+h+Pa′ − iCΓa′b′J iσ2p+h+Ja′b′ .

Here Q̃ are 16 supercharges while S̃ are 16 superconformal charges.

Next N=2 and N=1 superconformal algebras will be obtained from the psu(2,2|4) by

constructing projection operators.

2.2 N = 2 superconformal algebra with su(2)2×u(1)

From now on we shall derive N=2 superconformal algebra from N=4 superconformal al-

gebra.

For that purpose, let us introduce a projection operator defined by5

q+ =
1

2
(1 + Γ5678) ,

and require that

Q̃ = Q̃q+ , S̃ = S̃q+ .

Q̃ are 8 supercharges while S̃ are 8 superconformal charges. Then the anti-commutation

relation among Q̃ and S̃ are reduced to

{Q̃T , Q̃} = 4iCΓµq+p−h+P̃µ , {S̃T , S̃} = 4iCΓµq+p+h+K̃µ ,

{Q̃T , S̃} = iCΓµνIiσ2q+p+h+J̃µν + 2iCΓ4q+p+h+D̃

+2iCΓ9q+p+h+P9 − iCΓā′b̄′J iσ2q+p+h+Jā′ b̄′ ,

5Another projection operator q+ = 1

2
(1 + Γ56iσ2) also leads us to the similar result. In this case,

su(2)2×u(1) R-symmetry is generated by {Pā′ , Jā′ b̄′ , J56} with ā′ = 7, 8, 9.
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where ā′ = 5, 6, 7, 8 .

One can find that the following set of the generators,

{K̃µ, S̃, D̃, J̃µν , P9, Jā′ b̄′ , Q̃, P̃µ} (2.2)

forms N = 2 superconformal algebra. Since Jā′ b̄′ generates so(4)∼=su(2)×su(2), the R-

symmetry is su(2)×su(2)×u(1) generated by {P9, Jā′ b̄′} . The commutation relations be-

tween the bosonic generators are (2.1) and su(2)×su(2)×u(1), while those between the

bosonic generators and (Q̃, S̃) are

[P̃µ, S̃] = −1

2
Q̃Γµ4 , [K̃µ, Q̃] =

1

2
S̃Γµ4 , [D̃, Q̃] =

1

2
Q̃ , [D̃, S̃] = −1

2
S̃ ,

[J̃µν , Q̃] =
1

2
Q̃Γµν , [J̃µν , S̃] =

1

2
S̃Γµν , (2.3)

[P9, Q̃] =
1

2
Q̃iσ2 , [Jā′ b̄′ , Q̃] =

1

2
Q̃Γā′ b̄′ ,

[P9, S̃] =
1

2
S̃iσ2 , [Jā′ b̄′ , S̃] =

1

2
S̃Γā′ b̄′ . (2.4)

2.3 N = 1 superconformal algebra with u(1)3

Here we derive N=1 superconformal algebra from the psu(2,2|4).
Let us introduce a 1/4 projection operator defined by

q+ =
1

2
(1 + Γ56iσ2)

1

2
(1 + Γ78iσ2) , (2.5)

and require that

Q̃ = Q̃q+ , S̃ = S̃q+ .

Here Q̃ are 4 supercharges while S̃ are 4 superconformal charges. The anti-commutation

relations of Q̃ and S̃ are reduced to

{Q̃T , Q̃} = 4iCΓµq+p−h+P̃µ , {S̃T , S̃} = 4iCΓµq+p+h+K̃µ ,

{Q̃T , S̃} = iCΓµνIiσ2q+p+h+J̃µν + 2iCΓ4q+p+h+D̃ − 2iCJ q+p+h+R ,

where we have relabeled the three generators as follows:

R = R1 + R2 + R3 , RI = (P9, J56, J78) .

Then one finds that the set of the generators,

{K̃µ, S̃, D̃, J̃µν , RI , Q̃, P̃µ} ,

forms N=1 superconformal algebra. Here RI generate the R-symmetry u(1)3 . The com-

mutation relations of the bosonic generators are written in (2.1). Those of the bosonic

generators and (Q̃, S̃) are given by

[P̃µ, S̃] = −1

2
Q̃Γµ4 , [K̃µ, Q̃] =

1

2
S̃Γµ4 , [D̃, Q̃] =

1

2
,̃ [D̃, S̃] = −1

2
S̃ ,

[J̃µν , Q̃] =
1

2
Q̃Γµν , [J̃µν , S̃] =

1

2
S̃Γµν , (2.6)

[RI , Q̃] = −1

2
Q̃iσ2 , [RI , S̃] = −1

2
S̃iσ2 . (2.7)
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Finally we note that

{K̃µ, S̃, D̃, J̃µν , R, Q̃, P̃µ} (2.8)

forms the superalgebra su(2,2|1).

3. Super Schrödinger algebras

It is turn to find super Schrödinger subalgebras of N=2 and N=1 superconformal algebras

constructed in the previous section.

First of all, we consider the bosonic part. The discussion is common in both N=2 and

N=1 cases. In order to further reduce the commutation relations, let us decompose the

bosonic generators as follows:

P± =
1√
2
(P̃0 ± P̃3) , K± =

1√
2
(K̃0 ± K̃3) , Ji± =

1√
2
(J̃i0 ± J̃i3) ,

D =
1

2
(D̃ − J03) , D′ =

1

2
(D̃ + J03) , Pi = P̃i , Ki = K̃i , Jij = J̃ij (3.1)

µ = (0, i, 3), i = 1, 2.

Then it is straightforward to rewrite the commutation relations in (2.1) as

[Jij , Jk±]=ηjkJi± − ηikJj± , [Ji±, Jj∓]=Jij ± ηij(D
′ − D) ,

[Jij , Pk]=ηjkPi − ηikPj , [Jij ,Kk]=ηjkKi − ηikKj ,

[Pi,Kj ]=
1

2
Jij +

1

2
ηij(D

′+D) , [Pi,K±]=
1

2
Ji± , [P±,Ki]=−1

2
Ji± ,

[D,Ji±]=∓1

2
Ji± , [D′, Ji±]=±1

2
Ji± ,

[Pi, Jj±]=ηijP± , [Ki, Jj±]=ηijK± , [Ji±, P∓]=−Pi , [Ji±,K∓]=−Ki ,

[P+,K−]=−D′ , [P−,K+]=−D ,

[D,P−]=P− , [D,Pi]=
1

2
Pi , [D,K+]=−K+ , [D,Ki]=−1

2
Ki ,

[D′, P+]=P+ , [D′, Pi]=
1

2
Pi , [D′,K−]=−K− , [D′,Ki]=−1

2
Ki .

Here the set of the generators

{Jij , Ji+, D, P±, Pi, K+} (3.2)

is a subalgebra of so(4,2) and it forms the Schrödinger algebra

[Jij , Jk+]=ηjkJi+−ηikJj+ , [Jij , Pk]=ηjkPi−ηikPj , [Ji+, P−]=−Pi ,

[Pi,K+]=
1

2
Ji+ , [Pi, Jj+]=ηijP+ , [P−,K+]=−D , (3.3)

[D,Ji+]=−1

2
Ji+ , [D,P−]=P− , [D,Pi]=

1

2
Pi , [D,K+]=−K+ .

We note that P+ is a center of the Schrödinger algebra.

The remaining problem is the fermionic part, and hereafter we will discuss it by fol-

lowing the procedure developed in [14].

– 5 –
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3.1 From N = 2 conformal algebra to super Schrödinger algebra

We consider the N=2 superconformal algebra in this section.

According to the decomposition (3.1), we rewrite the (anti-)commutation relations

including the fermionic generators as follows:

{Q̃T , Q̃}= 4iCΓ+q+p−h+P+ + 4iCΓ−q+p−h+P− + 4iCΓiq+p−h+Pi ,

{S̃T , S̃}= 4iCΓ+q+p+h+K+ + 4iCΓ−q+p+h+K− + 4iCΓiq+p+h+Ki ,

{Q̃T , S̃}= iCΓijIiσ2q+p+h+Jij + 2iCΓi+Iiσ2q+p+h+Ji+ + 2iCΓi−Iiσ2q+p+h+Ji−
−2iCΓ4Γ+Γ−q+p+h+D′ − 2iCΓ4Γ−Γ+q+p+h+D

+2iCΓ9q+p+h+P9 − iCΓā′ b̄′J iσ2q+p+h+Jā′ b̄′ ,

[K±, Q̃] =−1

2
S̃Γ∓Γ4 , [Ki, Q̃]=

1

2
S̃Γi4 , [P±, S̃]=

1

2
Q̃Γ∓Γ4 , [Pi, S̃]=−1

2
Q̃Γi4 ,

[Jij , Q̃] =
1

2
Q̃Γij , [Jij , S̃]=

1

2
S̃Γij , [Ji±, Q̃]=−1

2
Q̃ΓiΓ

∓ , [Ji±, S̃]=−1

2
S̃ΓiΓ

∓ ,

[D, Q̃] =−1

4
Q̃Γ+Γ− , [D, S̃]=

1

4
S̃Γ−Γ+ , [D′, Q̃]=−1

4
Q̃Γ−Γ+ , [D′, S̃]=

1

4
S̃Γ+Γ− ,

and (2.4), where we have defined Γ± = 1√
2
(Γ0 ± Γ3) .

As was seen above, the set of the generators (3.2) forms the Schrödinger algebra. Then

we derive a super-Schrödinger algebra from N=2 superconformal algebra below.

Let us introduce the light-cone projection operator

ℓ± =
1

2
(1 ± Γ03) = −1

2
Γ±Γ∓ , (3.4)

which commutes with projectors h+, p± and q±, and decompose S̃ as

S = S̃ℓ− , S′ = S̃ℓ+ . (3.5)

Then we show that

{Jij , Ji+, D, P±, Pi, K+, Q̃, S, P9, Jā′ b̄′} (3.6)

forms a super Schrödinger algebra.

First the anti-commutation relations between Q̃ and S are given by

{Q̃T , Q̃} = 4iCΓ+q+p−h+P+ + 4iCΓ−q+p−h+P− + 4iCΓiq+p−h+Pi ,

{ST , S} = 4iCΓ+ℓ−q+p+h+K+ , (3.7)

{Q̃T , S} = iCΓijIiσ2ℓ−q+p+h+Jij + 2iCΓi+Iiσ2ℓ−q+p+h+Ji+

−2iCΓ4Γ−Γ+ℓ−q+p+h+D

+2iCΓ9ℓ−q+p+h+P9 − iCΓā′ b̄′J iσ2ℓ−q+p+h+Jā′ b̄′ ,

where we have used Γ±ℓ± = 0 . In the right-hand sides, the bosonic generators contained

in (3.6) appear.
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Next we examine commutation relations between the bosonic generators in (3.6) and

(Q̃, S)

[K+, Q̃] = −1

2
SΓ−Γ4 , [P−, S] =

1

2
Q̃ℓ+Γ+Γ4 , [Pi, S] = −1

2
Q̃ℓ−Γi4 ,

[Jij , Q̃] =
1

2
Q̃Γij , [Jij , S] =

1

2
SΓij , [Ji+, Q̃] = −1

2
Q̃ΓiΓ

− ,

[D, Q̃] = −1

4
Q̃Γ+Γ− , [D,S] =

1

4
SΓ−Γ+ , (3.8)

[P9, Q̃] =
1

2
Q̃iσ2 , [Jā′ b̄′ , Q̃] =

1

2
Q̃Γā′ b̄′ ,

[P9, S] =
1

2
Siσ2 , [Jā′ b̄′ , S] =

1

2
SΓā′ b̄′ .

The right-hand sides of the commutation relations above contain Q̃ and S only. Thus we

find that (3.6) forms a super Schrödinger algebra. The bosonic subalgebra is a direct sum

of the Schrödinger algebra and su(2)2×u(1). The number of the supercharges is 12 since

we have projected out 1/4 supercharges of 16 fermionic generators of N=2 superconformal

algebra.

We note that the set of generators, (3.2), su(2)2×u(1) generators and Q = Q̃ℓ−, forms

a super Schrödinger algebra with 4 supercharges. It is still a superalgebra even if there

are no su(2)2×u(1) generators. Such a superalgebra is a superextension of the Schrödinger

algebra with 4 supercharges.

3.2 From N = 1 conformal algebra to super Schrödinger algebra

We consider the N=1 superconformal algebra here.

Under the decomposition (3.1), the commutation relations, which include the fermionic

generators, are

{Q̃T , Q̃} = 4iCΓ+q+p−h+P+ + 4iCΓ−q+p−h+P− + 4iCΓiq+p−h+Pi ,

{S̃T , S̃} = 4iCΓ+q+p+h+K+ + 4iCΓ−q+p+h+K− + 4iCΓiq+p+h+Ki ,

{Q̃T , S̃} = iCΓijIiσ2q+p+h+Jij + 2iCΓi+Iiσ2q+p+h+Ji+ + 2iCΓi−Iiσ2q+p+h+Ji−
−2iCΓ4Γ+Γ−q+p+h+D′ − 2iCΓ4Γ−Γ+q+p+h+D

−2iCJ q+p+h+R ,

[K±, Q̃] = −1

2
S̃Γ∓Γ4 , [Ki, Q̃] =

1

2
S̃Γi4 ,

[P±, S̃] =
1

2
Q̃Γ∓Γ4 , [Pi, S̃] = −1

2
Q̃Γi4 ,

[Jij , Q̃] =
1

2
Q̃Γij , [Jij , S̃] =

1

2
S̃Γij ,

[Ji±, Q̃] = −1

2
Q̃ΓiΓ

∓ , [Ji±, S̃] = −1

2
S̃ΓiΓ

∓ ,

[D, Q̃] = −1

4
Q̃Γ+Γ− , [D, S̃] =

1

4
S̃Γ−Γ+ ,

[D′, Q̃] = −1

4
Q̃Γ−Γ+ , [D′, S̃] =

1

4
S̃Γ+Γ− , (3.9)

and (2.7), where we have defined Γ± = 1√
2
(Γ0 ± Γ3) .
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As was seen above, (3.2) is the Schrödinger algebra. Then we derive a supersymmetric

extension of the algebra from N = 1 superconformal algebra below.

Let us introduce the light-cone projection operator (3.4) and decompose S̃ as (3.5).

Then we find that

{Jij , Ji+, D, P±, Pi, K+, Q̃, S, RI} (3.10)

forms a super Schrödinger algebra.

First derive anti-commutation relations between Q̃ and S

{Q̃T , Q̃} = 4iCΓ+q+p−h+P+ + 4iCΓ−q+p−h+P− + 4iCΓiq+p−h+Pi ,

{ST , S} = 4iCΓ+ℓ−q+p+h+K+ ,

{Q̃T , S} = iCΓijIiσ2ℓ−q+p+h+Jij + 2iCΓi+Iiσ2ℓ−q+p+h+Ji+

−2iCΓ4Γ−Γ+ℓ−q+p+h+D − 2iCJ ℓ−q+p+h+R ,

where we have used Γ±ℓ± = 0 . In the right-hand sides, the bosonic generators in (3.10)

appear.

Next we examine the commutation relations between the bosonic generators in (3.10)

and (Q̃, S)

[K+, Q̃] = −1

2
SΓ−Γ4 , [P−, S] =

1

2
Q̃ℓ+Γ+Γ4 , [Pi, S] = −1

2
Q̃ℓ−Γi4 ,

[Jij , Q̃] =
1

2
Q̃Γij , [Jij , S] =

1

2
SΓij , [Ji+, Q̃] = −1

2
Q̃ΓiΓ

− ,

[D, Q̃] = −1

4
Q̃Γ+Γ− , [D,S] =

1

4
SΓ−Γ+ , (3.11)

[RI , Q̃] = −1

2
Q̃iσ2 , [RI , S] = −1

2
Siσ2 .

The right-hand sides of (3.11) contain Q̃ and S only. Thus the set of the generators (3.10)

forms a super Schrödinger subalgebra. The bosonic subalgebra is a direct sum of the

Schrödinger algebra and u(1)3 . The number of the supercharges is 6 since we have pro-

jected out 1/4 supercharges of 8 fermionic generators of N=1 superconformal algebra.

We note that the set of generators, (3.2), RI and Q = Q̃ℓ−, forms a super Schrödinger

algebra with 2 supercharges. It is still a superalgebra even if there are no RI . Such a

superalgebra is a superextension of the Schrödinger algebra with 2 supercharges.

If we start from N=1 superconformal algebra su(2,2|1) in (2.8), we obtain a super

Schrödinger algebra with u(1) R-symmetry

{Jij , Ji+, D, P±, Pi, K+, Q̃, S, R} . (3.12)

A relation to non-relativistic CS matter system

It is worth noting the relation between the algebra (3.12) and N = 2 super Schrödinger

algebra constructed in [17].

The bosonic subalgebra of (3.12) coincides with the bosonic part of the superalgebra

in [17] under the following identification of the generators,

(Jij , P−, Pi, Ji+, P+,D,K+, R) =

(

J,H,Pi, Gi, NB + NF ,D,K,NB − 1

2
NF

)

, (3.13)
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up to trivial scalings of generators. Here the right-hand side represents the generators used

in [17].

Then the next task is to consider the fermionic part of the algebra. Our supercharges

are Majorana-Weyl spinors in (9+1)-dimensions satisfying the Majorana condition Qc = Q ,

as explained in appendix.

Note that we may choose the charge conjugation matrix as C = Γ0 and then B = 1 .

It implies that ΓA’s are real: Γ∗
A = ΓA . With this choice, the Majorana condition simply

implies that Q∗ = Q . Since the projectors p± , q+ and ℓ± are real, the two-component

spinors, Q,Q′ and S are real: Q∗ = Q , Q′∗ = Q′ and S∗ = S where Q = Q̃ℓ− and

Q′ = Q̃ℓ+ .

The supercharges used in [17] are complex and hence it is necessary to convert our two-

component real supercharges into one-component complex supercharges. For this purpose,

let us introduce a pair of projectors

k± =
1

2
(1 ± iΓ12)

and decompose the two-component real spinors as

q1 = Qk+ , q′1 = Qk− , q2 = Q′k− , q′2 = Q′k+ , q3 = Sk− , q′3 = Sk+ .

Noting that k± are complex: k∗
± = k∓ , the Majorana condition implies that q1, q2 and q3

are complex one-component spinors

q∗1 = q′1 , q∗2 = q′2 , q∗3 = q′3 .

With the complex supercharges, the anti-commutation relations are rewritten as

{q1, q
∗
1} = 4iCΓ+k−ℓ−q+p−h+P+ ,

{q2, q
∗
2} = 4iCΓ−k+ℓ+q+p−h+P− ,

{q1, q
∗
2} = 4iCΓ1k+ℓ+q+p−h+(P1 − iP2) ,

{q3, q
∗
3} = 4iCΓ+k−ℓ−q+p+h+K+ ,

{q∗1 , q3} = 2iCΓ1Iiσ2k−ℓ−q+p+h+(J1+ + iJ2+) ,

{q∗2 , q3} = iCΓijIiσ2k−ℓ−q+p+h+Jij − 2iCΓ4Γ−Γ+k−ℓ−q+p+h+D

−2iCΓ4Γ−Γ+k−ℓ−q+p+h+R,

where we have used k± = ±iΓ12k± . On the other hand, the commutation relations includ-

ing the supercharges are

[J12, q1] = − i

2
q1 , [J12, q2] =

i

2
q2 , [J12, q3] =

i

2
q3 ,

[D, q2] = −1

4
q2Γ

+Γ− , [D, q3] =
1

4
q3Γ

−Γ+ , [J1+ − iJ2+, q2] = −q1Γ1Γ
− ,

[P−, q3] =
1

2
q2Γ

+Γ4 , [P1 − iP2, q3] = −q1Γ14 , [K+, q2] = −1

2
q3Γ

−Γ4 ,

[R, q1] = −1

2
q1iσ2 , [R, q2] = −1

2
q2iσ2 , [R, q3] = −1

2
q3iσ2 .
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Under the identification (3.13), the last three commutation relations are further rewritten,

by noting that P+ is center of the super Schrödinger algebra, as

[NF , qI ] =
1

3
qIiσ2 , [NB , qI ] = −1

3
qIiσ2 (I = 1, 2, 3) .

Thus we have shown that the above (anti-)commutation relations coincide with those of [17]

under the identification (3.13) and (q1, q2, q3) = (Q1, Q2, F ) , up to trivial rescalings of

generators.

4. Conclusion and discussion

We have found more super Schrödinger subalgebras of psu(2,2|4). First N=2 and N=1

superconformal algebras have been constructed from the psu(2,2|4) by constructing projec-

tion operators. Then a less supersymmetric Schrödinger algebra has been found from each

of them. The resulting two superalgebras are as follows: the one preserves 12 supercharges

with su(2)2×u(1) symmetry, and the other preserves 6 supercharges with u(1)3 symmetry.

We have also found another super Schrödinger algebra preserving 6 supercharges with

a single u(1) symmetry from su(2,2|1) . This algebra coincides with the symmetry of the

non-relativistic CS matter system in three dimensions [17].

It is interesting to look for non-relativistic systems which preserve super Schrödinger

symmetry with 24 and 12 supercharges as the maximal ones (i.e., new super NRCFTs).

Perhaps there would be two possible scenarios. The one is to reduce a four-dimensional su-

perconformal field theory with a light-like compactification to a three-dimensional theory,

according to the embedding of the Schrödinger algebra into the superconformal one. The

other is to take the standard non-relativistic limit of certain relativistic models as in [17].

It would also be interesting to consider the gravity dual of the non-relativistic CS matter

system.

We hope that our results would be a key to open a new arena to study the AdS/NRCFT

correspondence.
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A. psu(2,2|4) as N = 4 superconformal algebra

We briefly explain the relation between psu(2,2|4) and the generators of the N=4 super-

conformal algebra. The commutation relations of the psu(2,2|4) are as follows. The bosonic
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part is composed of the so(2,4) algebra

[Pa, Pb] = Jab , [Jab, Pc] = ηbcPa − ηacPb ,

[Jab, Jcd] = ηbcJad + 3-terms (a = 0, 1, 2, 3, 4) , (A.1)

and the so(6) algebra

[Pa′ , Pb′ ] = −Ja′b′ , [Ja′b′ , Pc′ ] = ηb′c′Pa′ − ηa′c′Pb′ ,

[Ja′b′ , Jc′d′ ] = ηb′c′Ja′d′ + 3-terms (a′ = 5, 6, 7, 8, 9) . (A.2)

The (anti-)commutation relations, which include the fermionic generator Q , are

[Pa,Q] = −1

2
QΓaIiσ2 , [Pa′ ,Q] =

1

2
QΓa′iσ2 , [JAB ,Q] =

1

2
QΓAB ,

{QT ,Q} = 2iCΓAh+PA + iCΓabIiσ2h+Jab − iCΓa′b′J iσ2h+Ja′b′ , A = (a, a′)

I = Γ01234 , J = Γ56789 .

Here ΓA’s are (9+1)-dimensional gamma-matrices and C is the charge conjugation matrix

satisfying

ΓT
A = −CΓAC−1 , C†C = 1 , CT = −C . (A.3)

The supercharge Q is a pair of Majorana-Weyl spinors in (9 + 1)-dimensions. The charge

conjugation of Q is defined by

Qc = Q∗B−1 , (A.4)

where the matrix B relates Γ∗
A and ΓA by

Γ∗
A = BΓAB−1 , B†B = 1 , BT = B . (A.5)

It is also related to C via

C = BΓ†
0
.

The Majorana-Weyl spinor Q satisfies the Majorana condition

Qc = Q

as well as the Weyl condition

Q = Qh+ , h+ ≡ 1

2
(1 + Γ01···9) : chirality projector .

By recombining the generators, we define the followings

P̃µ ≡ 1

2
(Pµ − Jµ4) , K̃µ ≡ 1

2
(Pµ + Jµ4) , D̃ ≡ P4 , J̃µν ≡ Jµν ,

Q̃ ≡ Qp− , S̃ ≡ Qp+ (a = (µ, 4), µ = 0, 1, 2, 3) .
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Here the projectors p± are defined by

p± ≡ 1

2
(1 ± Γ4Iiσ2) =

1

2
(1 ± Γ0123iσ2) , (A.6)

which commute with the chirality projector h+ . By noting that

pT
±C = Cp± , Γ0123iσ2p± = ±p± ,

the (anti-)commutation relations can also be rewritten as

[P̃µ, D̃] = −P̃µ , [K̃µ, D̃] = K̃µ , [P̃µ, K̃ν ] =
1

2
J̃µν +

1

2
ηµνD̃ ,

[J̃µν , P̃ρ] = ηνρP̃µ − ηµρP̃ν , [J̃µν , K̃ρ] = ηνρK̃µ − ηµρK̃ν ,

[J̃µν , J̃ρσ ] = ηνρJ̃µσ + 3-terms ,

{Q̃T , Q̃} = 4iCΓµp−h+P̃µ , {S̃T , S̃} = 4iCΓµp+h+K̃µ ,

{Q̃T , S̃} = iCΓµνIiσ2p+h+J̃µν + 2iCΓ4p+h+D̃

+2iCΓa′

p+h+Pa′ − iCΓa′b′J iσ2p+h+Ja′b′ ,

[P̃µ, S̃] = −1

2
Q̃Γµ4 , [K̃µ, Q̃] =

1

2
S̃Γµ4 , [D̃, Q̃] =

1

2
Q̃ , [D̃, S̃] = −1

2
S̃

[J̃µν , Q̃] =
1

2
Q̃Γµν , [J̃µν , S̃] =

1

2
S̃Γµν ,

[Pa′ , Q̃] =
1

2
Q̃Γa′J iσ2 , [Ja′b′ , Q̃] =

1

2
Q̃Γa′b′ ,

[Pa′ , S̃] =
1

2
S̃Γa′J iσ2 , [Ja′b′ , S̃] =

1

2
S̃Γa′b′ .

The so(6) part is given in (A.2). Thus the resulting algebra is nothing but the four-

dimensional N=4 superconformal algebra. Here Q̃ are 16 supercharges while S̃ are 16

superconformal charges.
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